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Abstract. We describe the improved Darboux theory of integrability for polynomial ordinary
differential equations in three dimensions. Using this theory and computer algebra, we study the
existence of first integrals for the three-dimensional Lotka–Volterra systems. Only working up
to degree two with the invariant algebraic surfaces and the exponential factors, we find the major
part of the known first integrals for such systems, and in addition we find three new classes of
integrability. The method used is of general interest and can be applied to any polynomial ordinary
differential equations in arbitrary dimension.

1. Introduction

Nonlinear ordinary differential equations appear in many branches of applied mathematics and
physics. In dimensions greater than two these systems usually present chaotic motion in the
sense that they depend sensitively on the choice of initial conditions, and more specifically
the difference between the initial conditions grows exponentially with time. It is important
to find conditions for the absence of this chaotic motion by looking for parameter values for
which the systems can be partially or completely integrable. For three-dimensional systems
the existence of one first integral means that the system is partially integrable, and the existence
of two independent first integrals means that the system is completely integrable (because the
phase portrait is then completely characterized). If a three-dimensional system is integrable
its solutions have good behaviour and it is possible to obtain global information on its long-
term evolution. Since the notion of integrability is based on the existence of first integrals
the following natural question arises. Given a system of ordinary differential equations
depending on parameters, how does one recognize the values of the parameters for which
the system has first integrals? Many different methods have been used to study the existence
of first integrals. Some of them have been developed for Hamiltonian systems, such as the
Ziglin [1, 2] analysis, or the method based on the Noether symmetries [3]. Other methods
can be applied to non-Hamiltonian systems: the method of Darboux [4], the method of Lie
symmetries [5], the Painlevé analysis [6], the use of Lax pairs [7], the direct method [8], the
linear compatibility analysis method [9], the Carlemann embedding procedure [10, 11], the
quasimonomial formalism [12], etc.

In 1878 Darboux [4] showed how one could construct the first integrals of planar
polynomial ordinary differential equations possessing sufficient invariant algebraic curves.
In particular, he proved that if a planar polynomial ordinary differential system of degreem
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(see section 2 for a definition) has at least [m(m + 1)/2] + 1 invariant algebraic curves, then it
has a first integral, which has an easy expression as a function of the invariant algebraic curves.
The version of the Darboux theory of integrability for three-dimensional polynomial vector
fields that we summarize in theorem 2 (see section 2), improves Darboux’s original exposition
because we also take into account the exponential factors introduced by Christopher [13] (see
[14] for more details and proofs), and the independent singular points [15]. The proofs given in
[14] are for two-dimensional polynomial vector fields but the arguments are the same for any
dimension greater than two. The Darboux theory of integrability works for real or complex
polynomial ordinary differential equations, but in this paper we only consider real systems and
we only study their real first integrals. The Darboux method for finding time-independent first
integrals has been used by several authors (see, for instance, [13, 16–18]), and it can also be
applied to the search for time-dependent first integrals (see [18–20]). In this work we restrict
our interest to finding time-independent first integrals.

We want to show that the Darboux method of integrability is one of the best methods for
finding first integrals of polynomial ordinary differential equations. In so doing, we choose
the three-dimensional Lotka–Volterra system (without the quadratic self-interacting terms) as
a paradigmatic system for the study of the integrability and show that not only can one obtain
easily almost all the previous known first integrals for such systems but also find new cases of
integrability. This model introduced by Volterra [21] and Lotka [22] appears in ecology where
it models a three-species competition, and it has been widely used in applied mathematics and
in a large variety of problems in physics: laser physics, plasma physics (where it approximates
the Vlasov–Poisson equation), convective instabilities, neural networks, etc (see the references
in Almeidaet al [23]). These authors have examined the integrability of the three-dimensional
Lotka–Volterra systems by using the method of Lie symmetries. A more complete study of the
integrability of the three-dimensional Lotka–Volterra systems has been made by Grammaticos
et al [24] using the linear compatibility method, the Painlevé analysis and the Jacobi last-
multiplier method. These systems were studied in arbitrary dimension and with the quadratic
self-interacting terms by Cairóet al [25] and Caiŕo and Feix [26] using the Carlemann method.
The polynomial first integrals of the three-dimensional homogeneous Lotka–Volterra system
have been analysed using the Darboux theory of integration by Labrunie [27] and Moulin-
Ollagnier [28]. The rational first integrals of degree zero of the three-dimensional homogeneous
Lotka–Volterra system has been characterized recently by Moulin-Ollagnier [34].

Intimately associated with the three-dimensional Lotka–Volterra systems are the so-called
ABC systems, which correspond to the particular case where the linear terms are absent.
Between these systems there is a known simple relation which we recall below. Thethree-
dimensional Lotka–Volterra systemsconsidered here are

dx

dt
= ẋ = P(x, y, z) = x(λ +Cy + z)

dy

dt
= ẏ = Q(x, y, z) = y(µ + x +Az) (1)

dz

dt
= ż = R(x, y, z) = z(ν +Bx + y)

where we note the absence of the quadratic self-interacting terms. We are concerned here with
the existence of (time-independent) first integrals of (1) when the six parametersλ, µ, ν, A,
B, C, the three dependendent variablesx, y, z, and the independent variablet (the time) are
real.

If λ = µ = ν 6= 0 then the change of variables(x, y, z, t)→ (x̄, ȳ, z̄, t̄ ) given by

x̄ = xe−λt ȳ = ye−λt z̄ = ze−λt t̄ = 1

λ
eλt (2)



Darboux integrability for the 3D Lotka–Volterra systems 2397

transforms (1) into the form

dx̄

dt̄
= x̄(Cȳ + z̄)

dȳ

dt̄
= ȳ(x̄ +Az̄)

dz̄

dt̄
= z̄(Bx̄ + ȳ).

This particular class of three-dimensional Lotka–Volterra systems are called theABC systems
(see, for instance, Labrunie [27]). Therefore, the dynamics of the three-dimensional Lotka–
Volterra systems withλ = µ = ν 6= 0 is equivalent to the dynamics of the same systems with
λ = µ = ν = 0, i.e. theABC systems.

This paper is organized as follows. In section 2 we present the results of the Darboux
theory of integrability adapted to the three-dimensional polynomial differential systems. The
first integrals of a polynomial ordinary differential system constructed using the Darboux theory
are based in the invariant algebraic surfaces and the exponential factors that the system has.
Thus, for the three-dimensional Lotka–Volterra systems we study in section 3 their invariant
algebraic surfacesf (x, y, z) = 0, wheref is a polynomial of degree at most two, and in
section 4 their exponential factors exp(g/h)with g andh being polynomials of degree at most
two. In section 5 we give the first integrals and the integrable systems (i.e. systems having two
independent first integrals) of the three-dimensional Lotka–Volterra systems obtained using the
invariant algebraic surfaces and the exponential factors computed in the previous two sections,
theorems 6 and 7 summarize our main results. In section 6 we compare our results with the
known results. Finally, we give our conclusions in section 7.

2. Darboux integrability theory

Before stating the main results of the Darboux theory for three-dimensional polynomial vector
fields we need some definitions.

In this paper apolynomial vector fieldX is a vector field inR3 of the form

X = P(x, y, z) ∂
∂x

+Q(x, y, z)
∂

∂y
+R(x, y, z)

∂

∂z

whereP ,Q andR are polynomials in the variablesx, y andz with real coefficients. In all of
this sectionm = max{degP, degQ, degR} will denote thedegreeof the polynomial vector
fieldX.

Here we say thatH : U → R3 is a first integral of the vector fieldX if the Lebesgue
measure ofR3 \ U is zero andH is a non-constant analytic function which is constant on
all solution surfaces(x(t), y(t), z(t)) of the vector fieldX onU ; i.e.H(x(t), y(t), z(t)) =
constant for all values oft for which the solution(x(t), y(t), z(t)) is defined onU . Clearly,H
is a first integral of the polynomial vector fieldX onU if and only ifXH = 0 on all the points
(x, y, z) of U . If H is a first integral ofX, then we can reduce the study of the trajectories of
X on the invariant setsH(x, y, z) = h whenh varies inR. We note that ifh ∈ R is a regular
value of the functionH , thenH(x, y, z) = h is a surface ofR3, and that by Sard’s theorem
the regular values are dense inR.

We say that the vector fieldX is integrableif X has two independent first integrals; i.e. if
X has two first integralsHi : Ui → R3 for i = 1, 2 such that the two vectors(

∂H1

∂x
,
∂H1

∂y
,
∂H1

∂z

) (
∂H2

∂x
,
∂H2

∂y
,
∂H2

∂z

)
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are independent at all the points(x, y, z) ∈ U1 ∩ U2 except perhaps into a subset of zero
Lebesgue measure. IfX is integrable with the two independent first integralsH1 andH2,
then its trajectories are determined by intersecting the invariant setsH1(x, y, z) = h1 and
H2(x, y, z) = h2 whenh1 andh2 vary inR. Hence, the dynamics (i.e. the trajectories) of an
integrable system is very well understood.

Let f ∈ R[x, y, z], where as usualR[x, y, z] denotes the ring of the polynomials in the
variablesx, y andz with real coefficients. The algebraic surfacef = 0 is called aninvariant
algebraic surfaceof the polynomial vector fieldX if for some polynomialK ∈ R[x, y, z] we
have

Xf = P ∂f
∂x

+Q
∂f

∂y
+R

∂f

∂z
= Kf. (3)

The polynomialK is called thecofactorof the invariant algebraic surfacef = 0. We note that
since the polynomial vector field has degreem, then any cofactor has at most degreem− 1.

Since on the points of an invariant algebraic surfacef = 0 the gradient(∂f/∂x, ∂f/∂y,
∂f/∂z) is orthogonal to the polynomial vector fieldX = (P,Q,R) (see (3)), it follows that
at every point(x, y, z) of the surfacef = 0 the vector fieldX is contained into the tangent
plane to the surfacef = 0 at that point. Hence, the surfacef = 0 is formed by trajectories of
the vector fieldX. This justifies the name ‘invariant algebraic surface’ given to the algebraic
surfacef = 0 satisfying (3) for some polynomialK, because it isinvariant under the flow
defined byX.

Let g, h ∈ R[x, y, z] be relatively prime polynomials in the ringR[x, y, z]. Then the
function exp(g/h) is called anexponential factorof the polynomial vector fieldX if the
equality

X
(
exp

(g
h

))
= K exp

(g
h

)
(4)

is satisfied for some polynomialK ∈ R[x, y, z] of degree at mostm − 1. As before we say
thatK is thecofactorof the exponential factor exp(g/h) (see [13, 14]), where the exponential
factors are introduced as a limit of suitable invariant algebraic surfaces.

From the point of view of the integrability of polynomial vector fields the importance of
the exponential factors is twofold. On one hand, they verify equation (4), and on the other
hand, their cofactors are polynomials of degree at mostm− 1. These two facts allow them to
play the same role as the invariant algebraic surfaces in the integrability of a three-dimensional
polynomial vector fieldX. We note that the exponential factors do not define invariant surfaces
of the flow of the vector fieldX.

The following proposition is due to Christopher [13].

Proposition 1. If F = exp(g/h) is an exponential factor for the polynomial vector fieldX,
thenh = 0 is an invariant algebraic surface, andg satisfies the equation

Xg = gKh + hKF

whereKh andKF are the cofactors ofh andF , respectively.

Before stating the main results of the Darboux theory we need some definitions. If
S(x, y, z) = ∑m−1

i+j+k=0 aijkx
iyj zk is a polynomial of degreem − 1 with (m + 2)(m + 1)m/6

coefficients inR, then we writeS ∈ Rm−1[x, y, z]. We identify the linear vector space
Rm−1[x, y, z] with R(m+2)(m+1)m/6 through the isomorphism

S → (a000, a100, a010, a001, . . . , am−1,0,0, am−2,1,0, . . . , a0,0,m−1).
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We say thatr points (xk, yk, zk) ∈ R3, k = 1, . . . , r, are independentwith respect to
Rm−1[x, y, z] if the intersection of ther hyperplanes

m−1∑
u+v+w=0

xuk y
v
k z
w
k auvw = 0 k = 1, . . . , r

in R(m+2)(m+1)m/6 is a linear subspace of dimension [(m + 2)(m + 1)m/6]− r.
Theorem 2. Suppose that the three-dimensional polynomial vector fieldX of degreem admits
p invariant algebraic surfacesfi = 0 with cofactorsKi for i = 1, . . . , p, q exponential
factorsexp(gj /hj ) with cofactorsLj for j = 1, . . . , q, and r independent singular points
(xk, yk, zk) ∈ R3 such thatfi(xk, yk, zk) 6= 0 for i = 1, . . . , p and fork = 1, . . . , r.

(1) If there existλi, µj ∈ R not all zero such that
∑p

i=1 λiKi +
∑q

j=1µjLj = 0, then the
function

|f1|λ1 · · · |fp|λp
(

exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq
(5)

is a first integral of the vector fieldX.
(2) If

p + q + r > 1
6(m + 2)(m + 1)m + 1

then there existλi, µj ∈ R not all zero such that
∑p

i=1 λiKi +
∑q

j=1µjLj = 0.
(3) X has[(m+ 2)(m+ 1)m/6] + 3 invariant algebraic surfaces if and only ifX has a rational

first integral.

For a proof of statements (1) and (2) of this version of the Darboux theory of integrability
for the three-dimensional polynomial vector fields see [14, 29]. The proofs are given in two
dimensions but the arguments extend directly to higher dimensions. Statement (3) is due to
Jouanolou [30] (see also Weil [31]). An improvement of statement (3) for planar polynomial
vector fields can be found in [14].

To apply statement (2) of theorem 2 to a three-dimensional Lotka–Volterra system, we
note that since this system always has three invariant algebraic surfacesx = 0, y = 0, z = 0,
and [(m + 2)(m + 1)m/6] + 1= 5, then it is sufficient for the integrability to have:

(i) two additional invariant algebraic surfaces or exponential factors;
(ii) one additional invariant algebraic surfacef4 = 0 such that the singular pointS of the

three-dimensional Lotka–Volterra system(
Aλ− µ− ACν

1 +ABC
,
−ABλ +Bµ− ν

1 +ABC
,
−λ− BCµ +Cν

1 +ABC

)
is not contained in the surfacesx = 0, y = 0, z = 0 andf4 = 0;

(iii) one additional exponential factor when the singular pointS is not contained inx = 0,
y = 0 andz = 0.

We remark that if using statement (1) of theorem 2 we obtain invariant algebraic surfaces or
exponential factors whose cofactors are linearly dependent in number smaller than five, then
we also obtain a first integral of the system.

Finally, from statement (3) of theorem 2 it follows that if a three-dimensional Lotka–
Volterra system has seven invariant algebraic surfaces, then it has a rational first integral.

In another context if the reader wants to better understand what kind of integrals can be
obtained using the Darboux theory of integrability, see the good papers by Prelle and Singer
[32] and Singer [32].
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3. Invariant algebraic surfaces

In this section we study the invariant algebraic surfaces of the three-dimensional Lotka–Volterra
systems of degree at most two. Thus, in proposition 3, we present the invariant planes (invariant
algebraic surfaces of degree one) together with their cofactors, and the conditions for their
existence. However, before we associate to a given three-dimensional Lotka–Volterra system
(1) two if ABC = 0, or five if ABC 6= 0, equivalentthree-dimensional Lotka–Volterra
systems. The first two are obtained by performing a circular permutation of the variablesx, y, z

and of the parametersλ,µ, ν andA,B,C, and the remainding three systems are obtained by
performing the transformation

(x, y, z, λ, µ, ν,A,B,C)→ (Bx,Az, Cy, λ, ν, µ,1/C, 1/B, 1/A)

and the two new transformations are obtained from the above circular permutations. We say
that all these Lotka–Volterra systems areE equivalent. All the results of this paper are stated
modulo theseE equivalences.

Proposition 3. A three-dimensional Lotka–Volterra system has an invariant planef = 0 with
cofactorK in the following cases, modulo theE equivalences.

(1) Any three-dimensional Lotka–Volterra system has the invariant planef = x = 0 with
K = λ +Cy + z.

(2) If λ = µ, A = 1 andC 6= 0, thenf = x − Cy = 0 andK = z + λ.
(3) For anABC system ifABC + 1 = 0, thenf = ABx + y − Az = 0 andK = 0;

consequentlyf is a polynomial first integral.

Proof. The proof is obtained by finding the linearf satisfying equation (3). The second part
of statement (3) follows directly from the definition of the first integral. �

The next proposition summarizes the invariant algebraic surfaces of degree two for
the three-dimensional Lotka–Volterra systems, their cofactors and the conditions for their
existence. In it we omit many invariant algebraic surfaces of degree two for the three-
dimensional Lotka–Volterra systems that later on will not contribute to obtaining relevant
information for the integrability of these systems. In fact, the relevant information for obtaining
first integrals is only given by the quadratic invariant algebraic surfaces of degree two of the
ABC systems, so in the following proposition we restrict our attention to such systems.

Proposition 4. TheABC systems have the following invariant algebraic surfacesf = 0 of
degree two with cofactorK, modulo theE equivalences.

(1) If B = 2 andA(C + 1) + 1= 0, thenf = 2A2xz− (y − Az)2 = 0 andK = 2x.
(2) If A = 1 andB = 2, thenf = xz + (C + 1)y(y − z) = 0 andK = 2x + z.
(3) If ABC − 1= 0 andB(A + 1) + 1= 0, thenf = A2(Bx − z)2− 2A(Bx + z)y + y2 = 0

andK = 0; consequentlyf is a polynomial first integral.
(4) If B = 1 andA(C + 1) + 1= 0, thenf = x(y +A2Cz)− C(y − Az)(y − Az + α) = 0

andK = x, whereα is an arbitrary constant. The system has the rational first integral
H = [x(y +A2Cz)− C(y − Az)2]/(y − Az).

(5) If A = 1 andC = 1, thenf = (x − y)(Bx − z) + αx = 0 andK = y + z, whereα is an
arbitrary constant. The system has the rational first integralH = [(x − y)(Bx − z)]/x.
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Proof. The proof for the existence of invariant algebraic surfaces under suitable assumptions is
obtained by finding the quadratic polynomialsf satisfying equation (3). Moreover, under the
hypotheses of statements (4) and (5), the three-dimensional Lotka–Volterra system has more
than seven invariant algebraic surfaces, then from theorem 2(3) it follows that it has a rational
first integral. These rational first integrals are computed using theorem 2(2). �

4. Exponential factors

Proposition 5 summarizes for the three-dimensional Lotka–Volterra system the exponential
factors of the form exp(g/h), whereg andh are polynomials of degree at most two, their
cofactors and the conditions for their existence. In the next proposition we omit many
exponential factors of the above form that later on do not contribute to obtaining relevant
information for the integrability of the three-dimensional Lotka–Volterra systems.

Proposition 5. A three-dimensional Lotka–Volterra system has the following exponential
factors modulo theE equivalences.

(1) If λ + (µB − ν)C = 0 and ABC + 1 = 0, then f = exp(ABx + y − Az) and
K = (µB − ν)x +µy − νAz.

(2) If λ = µ, A = 1 andC = 0, thenf = exp(y/x) andK = y.
(3) If λ = µ + ν, A = 1 and C = 1, then f = exp[(x − y)(z − Bx)/x] and

K = −Bλx +Bµy + νz.
(4) If λ = µ, ν = 0, A = 1 andC(B + 1) + 1 = 0, thenf1 = exp[B(x − Cy) − (x +

C2By)z/(x − Cy)] withK = Bλ(x − Cy).
(5) If λ = µ, ν = 0,A = 1,B = 0 andC = −1, thenf = exp[λ(z(αx−y)+(x+y)2)/(λx+

λy + xz)] andK = λ(x + y).
(6) For anABC system withA = −1, B = 1

2 andC = 0, we havef = exp[(y + z)2/(xy)]
andK = y + z.

Proof. The proof is obtained by finding the exponential factorsf = exp(g/h) with g a
quadratic polynomial andh one of the algebraic invariant surfaces reported in propositions 3
and 4 (see theorem 2). In order for such functionsf to be exponential factors they must
satisfy equation (4) with a cofactor given by a polynomial of degree at most one. So, solving
equation (4) the proposition follows. �

5. First integrals and integrable systems

In this section we apply the Darboux theory of integrability described in section 2 to the
three-dimensional Lotka–Volterra systems. Theorem 6 exhibits for these systems the first
integrals obtained by using only invariant algebraic surfaces of degrees one or two (given by
propositions 3 and 4, respectively) and statement (1) of theorem 2. More precisely, we look
for first integrals of the form

|f1|λ1|f2|λ2|f3|λ3|f4|λ4 (6)

wheref4 = 0 is an invariant algebraic surface of degree at most two, and theλi are real
numbers not all zero.
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Theorem 6. A three-dimensional Lotka–Volterra system has the following first integrals of the
form (6) wherefi = 0 are invariant algebraic surfaces of degree at most two modulo theE

equivalences.

(1) If λ + (µB − ν)C = 0 andABC + 1= 0, thenH = |x|Ay−1|z|−AC .
(2) If λ = µ, ν = 0, A = 1 andC 6= 0, thenH = x|y|BC |z|−C |x − Cy|−BC−1.

The next four statements hold forABC systems.
(3) If ABC + 1 = 0, then it is integrable with the first integralsH1 = ABx + y − Az and

H2 = xyBCz−C .
(4) If ABC − 1= 0 andB(A + 1) + 1= 0, thenH = A2(Bx − z)2 − 2A(Bx + z)y + y2.
(5) If B = 2 andA(C + 1) + 1= 0, thenH = x2|y|2(C+1)|z|−2C |2A2xz− (y − Az)2|C−1.
(6) If A = 1 andB = 2, then it is integrable with the first integralsH1 = x|y|−2(C+1)|z|−C
|xz + (C + 1)y(y − z)|2C+1 andH2 = (x − Cy)[xz + (C + 1)y(y − z)]/y2.

Proof. Using theorem 2(1) we construct the first integrals of the form (6) for each statement
of theorem 6, wherefi = 0 is an invariant algebraic surface with cofactorKi given by
propositions 3 or 4, and the following equality holdsλ1K1 + λ2K2 + λ3K3 + λ4K4 = 0
for some λi 6= 0. Of course, for the statements that two independent first integrals
exist the corresponding three-dimensional Lotka–Volterra system becomes integrable. For
statement (3)H1 is given directly in proposition 3 (3) andH2 can be found, for instance, in
[26, 27, 34]. �

Theorem 7 exhibits for the three-dimensional Lotka–Volterra system first integrals of the
form

|f1|λ1|f2|λ2|f3|λ3 exp
(g
h

)
(7)

where exp(g/h) is an exponential factor given by proposition 5, and thefi = 0 are invariant
algebraic surfaces of degree at most two given by propositions 3 and 4.

Theorem 7. A three-dimensional Lotka–Volterra system has the following first integrals of the
form (7) wherefi , g andh are polynomials of degree at most two, modulo theE equivalences.

(1) If λ+ (µB− ν)C = 0 andABC + 1= 0, then it is integrable with the first integrals given
by theorem 6(1) andH = |y|ν |z|−µ exp(ABx + y − Az).

(2) If λ = µ, A = 1 andBC = −1, thenH = |y +Bx|ν |z|−λ exp(Bx + y − z).
(3) If λ = µ, ν = 0, A = 1 andC = 0, thenH = |x|−B |y|Bz−1 exp(y/x).
(4) If λ = µ, ν = 0, A = 1 andB = 1, thenH = |y|λ|x|−λ exp[(y − z)(Cy − x)/y].

Moreover, ifC 6= 0 or C = 0, then it is integrable with the additional first integral given
by theorem 6(2) or in (3), respectively.

(5) If λ = µ, ν = 0, A = 1 andC = 1, then ifB 6= 0 it is integrable with the first integrals
given by theorem 6(2) andH = |x|µB |y|−µB exp[(x − y)(Bx − z)/x].

(6) If λ = µ, ν = 0, A = 1 andBC = −1, then it is integrable with the first integrals given
by theorem 6(2) and (2).

(7) If λ = µ, ν = 0,A = 1 andC(B + 1) + 1= 0, then it is integrable with the first integrals
given by theorem 6(2) andH = |x|µB |y|−µB exp[B(x −Cy)− (x +C2By)z/(x −Cy)].

(8) If λ = 2µ, ν = µ andA = B = C = 1, thenH = |x|µ|y− z|−2µ exp[(x− z)(x− y)/x].
(9) If A = −1, B = 1

2 and C = 0 then the ABC systems have the first integral
H = xy−1z2 exp[−2(y + z)2/(xy)].
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Proof. We note that, by construction, at least one of the first integrals of each statement of
theorem 7 is formed by three invariant algebraic surfacesfi = 0 with cofactorsKi (i = 1, 2, 3),
given by propositions 3 and 4, and one exponential factorf4 = exp(g/h) with cofactorK4

given by proposition 5. For each statement, a solution of systemλ1K1 +λ2K2 +λ3K3 +K4 = 0
exists. Hence, by theorem 2(1), to each statement corresponds a first integral of the form
|f1|λ1|f2|λ2|f3|λ3f4. Of course, for the statements which have two independent first integrals
of the form given by the expressions (6) or (7), the corresponding three-dimensional Lotka–
Volterra system becomes integrable. �

In the caseλ = µ = ν = 0 an easier expression for the first integral in statements (5) and
(7) of theorem 7 can be found in statements (5) and (4) of proposition 4, respectively.

6. About the known first integrals and integrable systems

Now we study which first integrals of the three-dimensional Lotka–Volterra systems and which
integrable three-dimensional Lotka–Volterra systems given in propositions and theorems 3–7,
are new.

Here we callDarboux-type functionsthe functions of the form (5), where thefi ’s, gi ’s
andhi ’s are polynomials in the variablesx, y andz.

Grammaticoset al[24] classify in 20 classes the three-dimensional Lotka–Volterra systems
for which they find first integrals or integrability. They found these first integrals using three
different methods: the linear compatibility method, Painlevé analysis and the Jacobi last-
multiplier method. In what follows we compare their results with ours. Since the systems
havingλ = µ = ν 6= 0 can be studied through the same system takingλ = µ = ν = 0 as was
mentioned in the introduction, we identify both systems. Then we have:

• For systems 1 [24] they give a first integral and we prove that such systems are integrable,
see theorem 7(1) takingλ = µ = ν = 0.
• The integrable systems 2 and 3 [24] are contained in the systems of theorem 7(4) taking
λ = µ = ν = 0.
• The integrable systems 4 [24] are the systems of theorem 7(1).
• The first integral of systems 5 [24] withλ = µ is the first integral of theorem 7(2). The

integrable systems 5 [24] withλ = µ = ν are contained in the systems of theorem 7(1)
takingλ = µ = ν = 0. The integrable systems 5 [24] withν = 0 are the systems of
theorem 7(6). The first integral of systems 5 [24] withλ = µ = 0 cannot be obtained with
the Darboux theory of integrability described in theorem 2, because such a first integral
is not a Darboux-type function.
• The integrable systems 6 and 7 [24] are contained in the system (6) of theorem 6, modulo

E equivalences.
• The first integrals of the integrable systems 8 [24] cannot be obtained with the techniques

of this paper because they are not Darboux-type functions. For these systems we have the
first integral of proposition 4(3).
• One of the first integrals of the integrable systems 9 [24] and 10 [24] is obtained in

theorems 6(2) and 7(3), respectively; the other is not of Darboux-type.
• One of the first integrals of the integrable systems 11 [24] is obtained in theorem 6(2) when
C 6= 0 and in theorem 7(3) whenC = 0, respectively; the other is not of Darboux-type.
• The first integral of systems 12 [24] is the first integral of theorem 7(8) up to circular

permutation.
• The integrable systems 13 [24] are the systems of theorem 7(5) up to circular permutation.
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• The integrable systems 14 [24] is the system of theorem 7(4) and 15 [24] is contained in
theorem 7(7), respectively.
• The first integrals of systems 16–20 [24] can be obtained with the Darboux theory of

integrability, but since they are polynomials of degree greater than two we have not studied
them in this paper.

Almeida et al [23] classify in 11 classes the three-dimensional Lotka–Volterra systems
for which they find time-dependent and time-independent first integrals. They found these
first integrals using the method of Lie symmetries. We remark that all the time-dependent
first integrals that they provided correspond to systems havingλ = µ = ν 6= 0. When we
identify these systems with the same systems but havingλ = µ = ν = 0 through the change
of variables (2), all the time-dependent first integrals become time independent. In this paper
they are identified. Then we obtain for the results which appear in their tables II and IV.

• The possible first integrals of systems II(1) [23] cannot be exhibited, neither in 22 nor
with the techniques of this paper.
• Systems II(2)–(5) [23] withλ = µ = ν = 0, for which they give a first integral, we prove

that they are integrable, see theorem 7(1).
• For systems II(6) and II(8) [23] withλ = µ = ν = 0, we prove that they are integrable,

see theorem 7(4).
• For systems II(7) [23] withλ = µ = ν = 0, we exhibit a first integral, see theorem 6(4).
• For systems II(9) [23] ifν = 0 andA = 1, we prove that they are integrable, see

theorem 7(6).
• The first integral of systems IV(1) and IV(5) [23] is obtained in theorem 6(2) taking
λ = µ = ν = 0.
• The integrable systems IV(2) and IV(6) [23] are contained in theorem 7(4) taking
λ = µ = ν = 0.
• The integrable systems IV(3) and IV(7) [23] are contained in theorem 6(6) taking
λ = µ = ν = 0.
• The first integrals of systems IV(4) and IV(11) [23] are contained and coincide with the

integrable systems of theorem 7(7), respectively.
• The integrable system IV(8) [23] is contained in theorem 6(6) modulo E equivalences,

takingλ = µ = ν = 0.
• The first integral of systems IV(9) [23] is obtained in theorem 6(2).
• The integrable systems IV(10) [23] is contained in theorem 7(4).

Labrunie [27] and Moulin-Ollagnier [28] characterize all the polynomial first integrals
of theABC systems. For degrees one and two they are the first integrals of theorems 6(3)
and 6(4), respectively.

In the papers of Cairóet al [25] and Caiŕo and Feix [26] the authors studied first integrals of
then-dimensional Lotka–Volterra systems containing all the quadratic self-interacting terms.
These first integrals in the particular case of dimension three and when the quadratic self-
interacting terms vanish, coinciding with the first integral of proposition 3(3).

7. Conclusion

We have presented in section 2 a summary of how to use the Darboux theory of integrability
for studying the first integrals of three-dimensional polynomial differential systems. As was
mentioned this theory can be applied ton-dimensional polynomial differential systems. We
apply this theory only up to degree two for the invariant algebraic surfaces and the exponential
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factors. This is enough to obtain the major part of the first integrals found until now for our
three-dimensional Lotka–Volterra system, and to detect new cases of integrability. Some of
these cases were actually already known as cases of partial integrability only (see theorems 6
and 7, and section 6). In particular, we find first integrals for the following three new cases for
theABCsystems: theorems 6(5) and 6(6) (which generalize the cases 6 and 7 of Grammaticos
et al and the cases IV(7) and IV(8) of Almeidaet al) and theorem 7(9).
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