lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Darboux integrability for 3D Lotka-Volterra systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 2395
(http://iopscience.iop.org/0305-4470/33/12/307)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger83(2000) 2395-2406. Printed in the UK PIl: S0305-4470(00)05934-5

Darboux integrability for 3D Lotka—Volterra systems

Laurent Caiot and Jaume Llibret

T Département de Maématiques MAPMO, UMR 6628, Univergitd'Orleans, BP 6759,
45067 Oréans, @dex 2, France

T Departament de Mateatiques, Universitat A@noma de Barcelona, 08193, Bellaterra,
Barcelona, Spain

E-mail: 1cairo@labomath.univ-orleans.fr andjllibre@mat.uab.es
Received 12 July 1999, in final form 21 October 1999

Abstract. We describe the improved Darboux theory of integrability for polynomial ordinary
differential equations in three dimensions. Using this theory and computer algebra, we study the
existence of first integrals for the three-dimensional Lotka—\Volterra systems. Only working up
to degree two with the invariant algebraic surfaces and the exponential factors, we find the major
part of the known first integrals for such systems, and in addition we find three new classes of
integrability. The method used is of general interest and can be applied to any polynomial ordinary
differential equations in arbitrary dimension.

1. Introduction

Nonlinear ordinary differential equations appear in many branches of applied mathematics and
physics. In dimensions greater than two these systems usually present chaotic motion in the
sense that they depend sensitively on the choice of initial conditions, and more specifically
the difference between the initial conditions grows exponentially with time. It is important
to find conditions for the absence of this chaotic motion by looking for parameter values for
which the systems can be partially or completely integrable. For three-dimensional systems
the existence of one first integral means that the system is partially integrable, and the existence
of two independent first integrals means that the system is completely integrable (because the
phase portrait is then completely characterized). If a three-dimensional system is integrable
its solutions have good behaviour and it is possible to obtain global information on its long-
term evolution. Since the notion of integrability is based on the existence of first integrals
the following natural question arises. Given a system of ordinary differential equations
depending on parameters, how does one recognize the values of the parameters for which
the system has first integrals? Many different methods have been used to study the existence
of first integrals. Some of them have been developed for Hamiltonian systems, such as the
Ziglin [1, 2] analysis, or the method based on the Noether symmetries [3]. Other methods
can be applied to non-Hamiltonian systems: the method of Darboux [4], the method of Lie
symmetries [5], the Painlévanalysis [6], the use of Lax pairs [7], the direct method [8], the
linear compatibility analysis method [9], the Carlemann embedding procedure [10, 11], the
quasimonomial formalism [12], etc.

In 1878 Darboux [4] showed how one could construct the first integrals of planar
polynomial ordinary differential equations possessing sufficient invariant algebraic curves.
In particular, he proved that if a planar polynomial ordinary differential system of degree
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(see section 2 for a definition) has at leasti}: + 1) /2] + 1 invariant algebraic curves, then it

has a first integral, which has an easy expression as a function of the invariant algebraic curves.
The version of the Darboux theory of integrability for three-dimensional polynomial vector
fields that we summarize in theorem 2 (see section 2), improves Darboux’s original exposition
because we also take into account the exponential factors introduced by Christopher [13] (see
[14] for more details and proofs), and the independent singular points [15]. The proofs givenin
[14] are for two-dimensional polynomial vector fields but the arguments are the same for any
dimension greater than two. The Darboux theory of integrability works for real or complex
polynomial ordinary differential equations, but in this paper we only consider real systems and
we only study their real first integrals. The Darboux method for finding time-independent first
integrals has been used by several authors (see, for instance, [13, 16—18]), and it can also be
applied to the search for time-dependent first integrals (see [18-20]). In this work we restrict
our interest to finding time-independent first integrals.

We want to show that the Darboux method of integrability is one of the best methods for
finding first integrals of polynomial ordinary differential equations. In so doing, we choose
the three-dimensional Lotka—\Volterra system (without the quadratic self-interacting terms) as
a paradigmatic system for the study of the integrability and show that not only can one obtain
easily almost all the previous known first integrals for such systems but also find new cases of
integrability. This model introduced by Volterra [21] and Lotka [22] appears in ecology where
it models a three-species competition, and it has been widely used in applied mathematics and
in a large variety of problems in physics: laser physics, plasma physics (where it approximates
the Vlasov—Poisson equation), convective instabilities, neural networks, etc (see the references
in Almeidaet al[23]). These authors have examined the integrability of the three-dimensional
Lotka—\Volterra systems by using the method of Lie symmetries. A more complete study of the
integrability of the three-dimensional Lotka—\Volterra systems has been made by Grammaticos
et al [24] using the linear compatibility method, the Pairdeanalysis and the Jacobi last-
multiplier method. These systems were studied in arbitrary dimension and with the quadratic
self-interacting terms by Cdiet al[25] and Caib and Feix [26] using the Carlemann method.

The polynomial first integrals of the three-dimensional homogeneous Lotka—\olterra system
have been analysed using the Darboux theory of integration by Labrunie [27] and Moulin-

Ollagnier [28]. Therationalfirstintegrals of degree zero of the three-dimensional homogeneous
Lotka—\Volterra system has been characterized recently by Moulin-Ollagnier [34].

Intimately associated with the three-dimensional Lotka—Volterra systems are the so-called
ABC systems, which correspond to the particular case where the linear terms are absent.
Between these systems there is a known simple relation which we recall belowthréke
dimensional Lotka—Volterra systemasnsidered here are

dx .

EZXZP(X,y,z)zx()\+Cy+z)

dy .

o =)= Q@ .=yt A 1)
dz .

E=Z=R(x,y,z)=z(v+Bx+y)

where we note the absence of the quadratic self-interacting terms. We are concerned here with
the existence of (time-independent) first integrals of (1) when the six parameters, A,
B, C, the three dependendent variabtey, z, and the independent variabl¢thetime) are
real.
If = u = v # 0then the change of variablés, y, z, 1) — (%, y, Z, ) given by

— Al

-1
X =xe y=ye™ 7=z f= Xe“ )
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transforms (1) into the form

di—‘(C'+‘)
di ~ ErTE
dy _ _ _
- = +A
a7 y(x+Az)
OIZ—‘(B‘+-)
dt__Z x+y).

This particular class of three-dimensional Lotka—\olterra systems are callddtiesystems

(see, for instance, Labrunie [27]). Therefore, the dynamics of the three-dimensional Lotka—
\olterra systems with = © = v # 0 is equivalent to the dynamics of the same systems with
A=pu=v=0,ie.theABC systems.

This paper is organized as follows. In section 2 we present the results of the Darboux
theory of integrability adapted to the three-dimensional polynomial differential systems. The
firstintegrals of a polynomial ordinary differential system constructed using the Darboux theory
are based in the invariant algebraic surfaces and the exponential factors that the system has.
Thus, for the three-dimensional Lotka—\Volterra systems we study in section 3 their invariant
algebraic surfaceg (x, y,z) = 0, wheref is a polynomial of degree at most two, and in
section 4 their exponential factors €xp i) with ¢ andhi being polynomials of degree at most
two. In section 5 we give the first integrals and the integrable systems (i.e. systems having two
independentfirstintegrals) of the three-dimensional Lotka—Volterra systems obtained using the
invariant algebraic surfaces and the exponential factors computed in the previous two sections,
theorems 6 and 7 summarize our main results. In section 6 we compare our results with the
known results. Finally, we give our conclusions in section 7.

2. Darboux integrability theory

Before stating the main results of the Darboux theory for three-dimensional polynomial vector
fields we need some definitions.
In this paper aolynomial vector fiel is a vector field inR® of the form

d 0 0
X=Px,y,2)—+0x,y,0)—+R(x,y,2)—
ax ay 0z

whereP, Q andR are polynomials in the variables y andz with real coefficients. In all of
this sectionm = max{degP, degQ, degR} will denote thedegreeof the polynomial vector
field X.

Here we say thatl : U — R2 is afirst integral of the vector fieldX if the Lebesgue
measure ofR® \ U is zero andH is a non-constant analytic function which is constant on
all solution surfacesx(z), y(¢), z(t)) of the vector fieldX on U; i.e. H(x(t), y(¢), z(t)) =
constant for all values affor which the solution(x (), y(¢), z(¢)) is defined orU. Clearly, H
is a firstintegral of the polynomial vector fiekdon U if and only if X H = 0 on all the points
(x,y,z)of U. If H is afirst integral ofX, then we can reduce the study of the trajectories of
X on the invariant set#l (x, y, z) = h whenh varies inR. We note that if» € R is a regular
value of the functionH, thenH (x, v, z) = h is a surface oR3, and that by Sard’s theorem
the regular values are denseRn

We say that the vector field is integrableif X has two independent first integrals; i.e. if
X has two first integral#Z; : U; — RS for i = 1, 2 such that the two vectors

0H, 0H1 0Hp 0H, 0H, 0H>
ax 3y’ 9z dx =y’ 9z
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are independent at all the points, y, z) € Uy N Uz except perhaps into a subset of zero
Lebesgue measure. K is integrable with the two independent first integrais and Hy,
then its trajectories are determined by intersecting the invariantfsgts y, z) = k1 and
H>(x,y,z) = h, whenhy andh; vary inR. Hence, the dynamics (i.e. the trajectories) of an
integrable system is very well understood.

Let f € R[x, vy, z], where as usuak][x, y, z] denotes the ring of the polynomials in the
variablesy, y andz with real coefficients. The algebraic surfate= 0 is called arinvariant
algebraic surfacef the polynomial vector fiel if for some polynomiak € R[x, y, z] we
have

Xf:P%+Q%+R%=Kf. 3)
ax dy 9z
The polynomialk is called thecofactorof the invariant algebraic surfagé= 0. We note that
since the polynomial vector field has degregthen any cofactor has at most degree- 1.

Since on the points of an invariant algebraic surfgce: 0 the gradientdf/ox, df/dy,
df/dz) is orthogonal to the polynomial vector field = (P, Q, R) (see (3)), it follows that
at every point(x, y, z) of the surfacef = 0 the vector fieldX is contained into the tangent
plane to the surfacg = 0 at that point. Hence, the surfage= 0 is formed by trajectories of
the vector fieldX. This justifies the name ‘invariant algebraic surface’ given to the algebraic
surfacef = 0 satisfying (3) for some polynomia&’, because it isnvariant under the flow
defined byX.

Let g, h € R[x, y, z] be relatively prime polynomials in the rin§[x, y, z]. Then the
function exfig/h) is called anexponential factoof the polynomial vector fieldX if the

equality
(ewn(£) = kewa(?) @

is satisfied for some polynomi& € R[x, y, z] of degree at mosiz — 1. As before we say
thatK is thecofactorof the exponential factor exp/ k) (see [13, 14]), where the exponential
factors are introduced as a limit of suitable invariant algebraic surfaces.

From the point of view of the integrability of polynomial vector fields the importance of
the exponential factors is twofold. On one hand, they verify equation (4), and on the other
hand, their cofactors are polynomials of degree at most1. These two facts allow them to
play the same role as the invariant algebraic surfaces in the integrability of a three-dimensional
polynomial vector field{. We note that the exponential factors do not define invariant surfaces
of the flow of the vector field.

The following proposition is due to Christopher [13].

Proposition 1. If F = exp(g/h) is an exponential factor for the polynomial vector figld
thenh = Ois an invariant algebraic surface, anglsatisfies the equation

Xg=gKp+hKp
whereK; and K r are the cofactors ot and F, respectively.

Before stating the main results of the Darboux theory we need some definitions. |If
S(x,y,z7) = Z?iﬁk:o a;xx'y/Z* is a polynomial of degree: — 1 with (m + 2)(m + Lym/6
coefficients inR, then we writeS € R, _1[x, y,z]. We identify the linear vector space
Ryu_1[x, y, z] with Rm*+2+Dm/6 through the isomorphism

S — (aooo, @100, 4010, AOOL; - - - » Am—1,0,0> Am—2,1,05 - - - » €0,0,m—1)-
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We say that points (x, v, zx) € R%, k = 1,...,r, areindependentvith respect to
R,._1[x, y, z] if the intersection of the hyperplanes

m—=1
E XEVEZE aypw =0 k=1,...,r

utvtw=0
in Rm*+2m+hm/6 g 3 linear subspace of dimensiam[+ 2)(m + 1)m /6] — r.

Theorem 2. Suppose that the three-dimensional polynomial vector fiedldegreen admits
p invariant algebraic surfaceg; = 0 with cofactorsk; fori = 1,..., p, ¢ exponential
factorsexp(g;/ ;) with cofactorsL; for j = 1,..., ¢, andr independent singular points
(X, Vi, zx) € R3 such thatf; (xi, yx, zx) # 0fori =1,..., pandfork =1,...,r.

(1) If there existh;, u; € R not all zero such thad/_; 4 K; + > %_; u;L; = O, then the

function
[ f1l | fpl (exp< m)) (exp( e 5)

is a first integral of the vector field .
@) If

prg+r>gm+2)(m+hm+1

then there exist;, ;; € R not all zero such thab -7 4, K; +>%_; u,;L; = 0.
(3) X has[(m +2)(m +1)m/6] + 3invariant algebraic surfaces if and only X has a rational
first integral.

For a proof of statements (1) and (2) of this version of the Darboux theory of integrability
for the three-dimensional polynomial vector fields see [14,29]. The proofs are given in two
dimensions but the arguments extend directly to higher dimensions. Statement (3) is due to
Jouanolou [30] (see also Weil [31]). An improvement of statement (3) for planar polynomial
vector fields can be found in [14].

To apply statement (2) of theorem 2 to a three-dimensional Lotka—Volterra system, we
note that since this system always has three invariant algebraic sutfac@sy = 0,z = 0,
and [m +2)(m + 1)m /6] + 1 = 5, then it is sufficient for the integrability to have:

(i) two additional invariant algebraic surfaces or exponential factors;
(ii) one additional invariant algebraic surfagg = O such that the singular poiist of the
three-dimensional Lotka—\Volterra system

AA—pu—ACv —ABA+Bu—v —A—BCu+Cv
1+ABC 1+ABC ’ 1+ABC

is not contained in the surfaces= 0,y =0,z = 0andf; = 0;
(iii) one additional exponential factor when the singular pdiris not contained inx = 0,
y=0andz = 0.

We remark that if using statement (1) of theorem 2 we obtain invariant algebraic surfaces or
exponential factors whose cofactors are linearly dependent in number smaller than five, then
we also obtain a first integral of the system.

Finally, from statement (3) of theorem 2 it follows that if a three-dimensional Lotka—
\olterra system has seven invariant algebraic surfaces, then it has a rational first integral.

In another context if the reader wants to better understand what kind of integrals can be
obtained using the Darboux theory of integrability, see the good papers by Prelle and Singer
[32] and Singer [32].
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3. Invariant algebraic surfaces

Inthis section we study the invariant algebraic surfaces of the three-dimensional Lotka—Volterra
systems of degree at mosttwo. Thus, in proposition 3, we present the invariant planes (invariant
algebraic surfaces of degree one) together with their cofactors, and the conditions for their
existence. However, before we associate to a given three-dimensional Lotka—Volterra system
(1) two if ABC = 0, or five if ABC # 0, equivalentthree-dimensional Lotka—\olterra
systems. The firsttwo are obtained by performing a circular permutation of the vaniables

and of the parametels u, v andA, B, C, and the remainding three systems are obtained by
performing the transformation

(x,y,z,A, u,v,A,B,C) - (Bx,Az,Cy, A, v,u,1/C,1/B,1/A)

and the two new transformations are obtained from the above circular permutations. We say
that all these Lotka—\Volterra systems @ equivalent All the results of this paper are stated
modulo these: equivalences

Proposition 3. A three-dimensional Lotka—\Volterra system has an invariant pjare0 with
cofactorK in the following cases, modulo thi2equivalences.

(1) Any three-dimensional Lotka—\olterra system has the invariant pfare x = 0 with
K=A+Cy+z.

@) lfr=pu, A=1andC #0,thenf =x —Cy =0andK =z +A.

(3) Foran ABC system ifABC +1 = 0, thenf = ABx+y— Az = 0and K = 0
consequently is a polynomial first integral.

Proof. The proof is obtained by finding the linegrsatisfying equation (3). The second part
of statement (3) follows directly from the definition of the first integral. O

The next proposition summarizes the invariant algebraic surfaces of degree two for
the three-dimensional Lotka—\olterra systems, their cofactors and the conditions for their
existence. In it we omit many invariant algebraic surfaces of degree two for the three-
dimensional Lotka—\olterra systems that later on will not contribute to obtaining relevant
information for the integrability of these systems. In fact, the relevant information for obtaining
first integrals is only given by the quadratic invariant algebraic surfaces of degree two of the
ABC systems, so in the following proposition we restrict our attention to such systems.

Proposition 4. The ABC systems have the following invariant algebraic surfages 0 of
degree two with cofactok, modulo theE equivalences.

(1) f B=2andA(C +1)+1=0,thenf =24%xz — (y — Az)> =0andK = 2x.

2)IfA=1andB =2,thenf =xz+(C+1y(y —z) =0andK = 2x +z.

() fFABC—1=0andB(A+1)+1=0,thenf = A%(Bx —2)2 —2A(Bx +2)y+y2=0
and K = 0; consequentlyf is a polynomial first integral.

(4) f B=1andA(C+1)+1=0,thenf = x(y + A%Cz) — C(y — Az)(y — Az+a) =0
and K = x, wherex is an arbitrary constant. The system has the rational first integral
H =[x(y+ A’Cz) — C(y — A2)?]/(y — A2).

(5) fA=1andC = 1,thenf = (x — y)(Bx —z) +ax = 0andK = y +z, wherex is an
arbitrary constant. The system has the rational first integfak [(x — y)(Bx — 2)]/x.
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Proof. The proof for the existence of invariant algebraic surfaces under suitable assumptions is
obtained by finding the quadratic polynomiglsatisfying equation (3). Moreover, under the
hypotheses of statements (4) and (5), the three-dimensional Lotka—\Volterra system has more
than seven invariant algebraic surfaces, then from theorem 2(3) it follows that it has a rational
first integral. These rational first integrals are computed using theorem 2(2). |

4. Exponential factors

Proposition 5 summarizes for the three-dimensional Lotka—Volterra system the exponential
factors of the form ex(/h), whereg andh are polynomials of degree at most two, their
cofactors and the conditions for their existence. In the next proposition we omit many
exponential factors of the above form that later on do not contribute to obtaining relevant
information for the integrability of the three-dimensional Lotka—\Volterra systems.

Proposition 5. A three-dimensional Lotka—Volterra system has the following exponential
factors modulo th& equivalences.

Q) fr+ @B —-v)C = 0and ABC +1 = 0, then f = exp(ABx +y — Az) and
K=(WuB—v)x+uy—vAz.

2) IfAr=pu, A=1andC =0, thenf = exp(y/x) andK = y.

B AL =pnu+v, A =1landC = 1, thenf = exp[x — y)(z — Bx)/x] and
K =—BAx + Buy +vz.

@Hfr=u,v=0A=21andC(B+1) +1=0,thenf; = exp[B(x — Cy) — (x +
C?By)z/(x — Cy)] with K = BA(x — Cy).

(5) IfA=pu,v=0A=1B=0andC = —1,thenf = expp(z(ax —y)+(x+y)?)/(Ax +
Ay +xz)]andK = A(x +y).

(6) ForanABC system with = —1, B = % andC = 0, we havef = exp[(y +z)%/(xy)]
andK =y +z.

Proof. The proof is obtained by finding the exponential factgrs= exp(g/h) with ¢ a
quadratic polynomial and one of the algebraic invariant surfaces reported in propositions 3
and 4 (see theorem 2). In order for such functighto be exponential factors they must
satisfy equation (4) with a cofactor given by a polynomial of degree at most one. So, solving
equation (4) the proposition follows. O

5. First integrals and integrable systems

In this section we apply the Darboux theory of integrability described in section 2 to the
three-dimensional Lotka—\Volterra systems. Theorem 6 exhibits for these systems the first
integrals obtained by using only invariant algebraic surfaces of degrees one or two (given by
propositions 3 and 4, respectively) and statement (1) of theorem 2. More precisely, we look
for first integrals of the form

| Al 212 fal2) fal™ (6)

where f, = 0 is an invariant algebraic surface of degree at most two, and,tlaee real
numbers not all zero.
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Theorem 6. A three-dimensional Lotka—\Volterra system has the following first integrals of the
form (6) wheref; = 0 are invariant algebraic surfaces of degree at most two modulafthe
equivalences.

(1) If A+ (uB —v)C =0andABC +1 =0, thenH = |x|*y~t|z|7AC.

(2) IfA=pu,v=0,A=1andC # 0, thenH = x|y|5¢|z|~C|x — Cy|~BC-1,
The next four statements hold faB C systems.

(3) If ABC +1 = 0, then it is integrable with the first integrald; = ABx + y — Az and
Hy = xyBCz’C.

(4) fABC —1=0andB(A+1)+1=0,thenH = A%(Bx — 2)® — 2A(Bx +2)y + y2.

(5) If B=2andA(C +1)+1=0,thenH = x?|y|X*D|z|72€|24%xz — (y — Az)?|C~L.

(6) If A = 1and B = 2, then it is integrable with the first integraldy = x|y|~2C¢*D|z|~¢
lxz +(C+Dy(y —2)P“** and Hy = (x — Cy)[xz + (C + Dy (y — 2)]/y>.

Proof. Using theorem 2(1) we construct the first integrals of the form (6) for each statement
of theorem 6, wheref; = 0 is an invariant algebraic surface with cofacty given by
propositions 3 or 4, and the following equality holdsK; + AoK, + A3K3 + A4K4 = 0

for somex; # 0. Of course, for the statements that two independent first integrals
exist the corresponding three-dimensional Lotka—Volterra system becomes integrable. For
statement (3H; is given directly in proposition 3 (3) anH, can be found, for instance, in

[26, 27, 34]. O

Theorem 7 exhibits for the three-dimensional Lotka—Volterra system first integrals of the
form

APl exp( ) (@)

where exj§g/ h) is an exponential factor given by proposition 5, and the- 0 are invariant
algebraic surfaces of degree at most two given by propositions 3 and 4.

Theorem 7. A three-dimensional Lotka—Volterra system has the following first integrals of the
form (7) wheref;, g andh are polynomials of degree at most two, moduloZheguivalences.

Q) fA+(uB—v)C =0andABC +1 = 0, thenitis integrable with the first integrals given
by theorem 6(1) andf = |y|"|z| " exp(ABx +y — Az).

(2 fA=pu, A=1andBC = —1,thenH = |y + Bx|"|z| " exp(Bx +y — 2).

(B) fA=pu,v=0,4=1andC =0, thenH = |x|B|y|BzLexp(y/x).

@ fA=puv=0A=1andB = 1, thenH = |y|*x|™*exp[(y — 2)(Cy — x)/y].
Moreover, ifC # 0 or C = 0, then it is integrable with the additional first integral given
by theorem 6(2) or in (3), respectively.

B) fA=u,v=0,A=1andC = 1, thenif B # Qitis integrable with the first integrals
given by theorem 6(2) anH = |x|“8|y|~*& exp[(x — y)(Bx — z)/x].

(6) If A =pu,v=0,A=1andBC = —1, then it is integrable with the first integrals given
by theorem 6(2) and (2).

(7)) fA=pu,v=0,A=1andC(B +1)+1=0,thenitis integrable with the first integrals
given by theorem 6(2) anl = |x|*8|y|~*E exp[B(x — Cy) — (x + C?By)z/(x — Cy)].

(8) If A =2u,v=pandA = B = C = 1, thenH = |x|*|y — z| % exp[(x —z)(x — y)/x].

9IfA = -1 B = % and C = 0 then the ABC systems have the first integral
H = xy ‘2% exp[-2(y +2)?/(xy)].
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Proof. We note that, by construction, at least one of the first integrals of each statement of
theorem 7 is formed by three invariant algebraic surfgces 0 with cofactork; (i = 1, 2, 3),

given by propositions 3 and 4, and one exponential fagio= exp(g/h) with cofactork,

given by proposition 5. For each statement, a solution of sysigfm+i, K, +A3K3+ K4 = 0

exists. Hence, by theorem 2(1), to each statement corresponds a first integral of the form
| 1171 f2122| f3|*2 fa. Of course, for the statements which have two independent first integrals
of the form given by the expressions (6) or (7), the corresponding three-dimensional Lotka—
\olterra system becomes integrable. |

Inthe case. = u = v = 0 an easier expression for the first integral in statements (5) and
(7) of theorem 7 can be found in statements (5) and (4) of proposition 4, respectively.

6. About the known first integrals and integrable systems

Now we study which first integrals of the three-dimensional Lotka—\Volterra systems and which
integrable three-dimensional Lotka—Volterra systems given in propositions and theorems 3-7,
are new.

Here we callDarboux-type functionthe functions of the form (5), where thg's, g;'s
and#;’s are polynomials in the variables y andz.

Grammaticogt al[24] classify in 20 classes the three-dimensional Lotka—\Volterra systems
for which they find first integrals or integrability. They found these first integrals using three
different methods: the linear compatibility method, Paigl@nalysis and the Jacobi last-
multiplier method. In what follows we compare their results with ours. Since the systems
havingr = u = v # 0 can be studied through the same system takiagu = v = 0 as was
mentioned in the introduction, we identify both systems. Then we have:

o For systems 1 [24] they give a first integral and we prove that such systems are integrable,
see theorem 7(1) taking= pu = v = 0.

e The integrable systems 2 and 3 [24] are contained in the systems of theorem 7(4) taking
A=u=v=0.

e The integrable systems 4 [24] are the systems of theorem 7(1).

e The first integral of systems 5 [24] with = . is the first integral of theorem 7(2). The
integrable systems 5 [24] with = u = v are contained in the systems of theorem 7(1)
takingA = u = v = 0. The integrable systems 5 [24] with= 0 are the systems of
theorem 7(6). The firstintegral of systems 5 [24] with= « = 0 cannot be obtained with
the Darboux theory of integrability described in theorem 2, because such a first integral
is not a Darboux-type function.

e The integrable systems 6 and 7 [24] are contained in the system (6) of theorem 6, modulo
E equivalences.

e The first integrals of the integrable systems 8 [24] cannot be obtained with the techniques
of this paper because they are not Darboux-type functions. For these systems we have the
first integral of proposition 4(3).

e One of the first integrals of the integrable systems 9 [24] and 10 [24] is obtained in
theorems 6(2) and 7(3), respectively; the other is not of Darboux-type.

e One of the firstintegrals of the integrable systems 11 [24] is obtained in theorem 6(2) when
C # 0 and in theorem 7(3) whefi = 0, respectively; the other is not of Darboux-type.

e The first integral of systems 12 [24] is the first integral of theorem 7(8) up to circular
permutation.

e Theintegrable systems 13 [24] are the systems of theorem 7(5) up to circular permutation.



2404 L Cair6 and J Llibre

e The integrable systems 14 [24] is the system of theorem 7(4) and 15 [24] is contained in
theorem 7(7), respectively.

e The first integrals of systems 16—20 [24] can be obtained with the Darboux theory of
integrability, but since they are polynomials of degree greater than two we have not studied
them in this paper.

Almeidaet al [23] classify in 11 classes the three-dimensional Lotka—\olterra systems
for which they find time-dependent and time-independent first integrals. They found these
first integrals using the method of Lie symmetries. We remark that all the time-dependent
first integrals that they provided correspond to systems haviagu = v # 0. When we
identify these systems with the same systems but haviagu = v = 0 through the change
of variables (2), all the time-dependent first integrals become time independent. In this paper
they are identified. Then we obtain for the results which appear in their tables Il and IV.

e The possible first integrals of systems II(1) [23] cannot be exhibited, neither in 22 nor
with the techniques of this paper.

o Systems I1(2)—(5) [23] with. = u = v = 0, for which they give a first integral, we prove
that they are integrable, see theorem 7(1).

e For systems 11(6) and 11(8) [23] with = u = v = 0, we prove that they are integrable,
see theorem 7(4).

e For systems II(7) [23] with. = u = v = 0, we exhibit a first integral, see theorem 6(4).

e For systems 11(9) [23] ifv = 0 andA = 1, we prove that they are integrable, see
theorem 7(6).

e The first integral of systems IV(1) and IV(5) [23] is obtained in theorem 6(2) taking
A=u=v=0.

e The integrable systems IV(2) and IV(6) [23] are contained in theorem 7(4) taking
A=u=v=0.

e The integrable systems IV(3) and IV(7) [23] are contained in theorem 6(6) taking
A=u=v=0.

e The first integrals of systems 1V(4) and IV(11) [23] are contained and coincide with the
integrable systems of theorem 7(7), respectively.

e The integrable system IV(8) [23] is contained in theorem 6(6) modulo E equivalences,
takingh = u=v =0.

e The first integral of systems IV(9) [23] is obtained in theorem 6(2).

e The integrable systems IV(10) [23] is contained in theorem 7(4).

Labrunie [27] and Moulin-Ollagnier [28] characterize all the polynomial first integrals
of the ABC systems. For degrees one and two they are the first integrals of theorems 6(3)
and 6(4), respectively.

In the papers of Cairet al[25] and Caib and Feix [26] the authors studied first integrals of
then-dimensional Lotka—\olterra systems containing all the quadratic self-interacting terms.
These first integrals in the particular case of dimension three and when the quadratic self-
interacting terms vanish, coinciding with the first integral of proposition 3(3).

7. Conclusion

We have presented in seati@ a summary of how to use the Darboux theory of integrability
for studying the first integrals of three-dimensional polynomial differential systems. As was
mentioned this theory can be appliedrt@imensional polynomial differential systems. We
apply this theory only up to degree two for the invariant algebraic surfaces and the exponential
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factors. This is enough to obtain the major part of the first integrals found until now for our
three-dimensional Lotka—Volterra system, and to detect new cases of integrability. Some of
these cases were actually already known as cases of partial integrability only (see theorems 6
and 7, and section 6). In particular, we find first integrals for the following three new cases for
theABCsystems: theorems 6(5) and 6(6) (which generalize the cases 6 and 7 of Grammaticos
et al and the cases IV(7) and 1V(8) of Almei@# al) and theorem 7(9).
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